Are you still talking about Cyclone Nargis? Have you ever heard of Cyclone Nargis? Here’s a reminder: on 1 May 2008 a weakening low-pressure system suddenly picked up energy as it approached Burma from the Bay of Bengal. By the second day of this rapid strengthening, Cyclone Nargis was blowing in excess of 135MPH and made landfall on the low-lying southern coast of Burma armed with vast reserves of cyclonic energy, a storm surge beneath, and constant heavy rain from above. The Irrawaddy Delta was devastated, causing at least 140,000 human deaths. Most of us have forgotten about it.
One reason you may have heard of Cyclone Nargis at the time, is that for a short while it was the cause of a major diplomatic incident, with the Burmese Junta refusing to accept aid and assistance from the West, while continuing with a meaningless referendum. Another reason you may have heard of Cyclone Nargis is because you live near to Burma; and there’s the rub – proximity is the single most important factor in deciding whether a story is newsworthy in the mainstream media, and until Hurricane Katrina hit Louisiana in 2005, devastating coastal flooding was just something that happened to “other people” as far as the vast majority of Americans were concerned.
That’s not going to change anytime soon – it’s partly down to our natural tendency for prioritising the local and the immediate, for survival reasons; but to a large extent it is also down to the cultural conditioning that exists in most civilisations in order to only value that which benefits the system that you are deemed to be part of. If you are American then that means that anything that doesn’t affect America, doesn’t matter. You can safely repeat that mantra for any civilised nation. It’s not necessarily good, but it’s true.
In 
Part I of this article, we examined the best available research, and, given the current best forecast of 2 metres and the consistent tendency of climate forecasters to undershoot their own subsequent observations, we concluded that a 4 metre sea level rise over the course of this century is quite likely.
In this part, we focus on two areas that are most familiar to the two authors, and also relevant to the majority of readers: Dmitry is going to look at the likely impact of future sea-level rise on the Eastern Seaboard of the USA, not just in terms of the direct effects of flooding on habitation, but the many different indirect effects that sea-level rise will have; Keith is going to do the same for the east coast of England and the Netherlands, two places that have seen their fair share of flooding in the past, and are bound to suffer in the future. 
   The view from New England, by Dmitry Orlov 
When it comes to addressing the effects  of sea level rise that is expected to occur over the course of this  century, there are many ways to immerse yourself in the subject. You  might do some reading and make some field trips, talk to knowledgeable  people, attend some seminars, and write some research papers. Or you  might take an entire year to slowly traverse the landscape in question,  and get a feel for it through a lot of direct observation, which is  what I did. I spent about a year sailing around the Eastern Seaboard  of North America, from the submerged coastal mountain range that is  the coast of Maine north of Portland to the shifting sand dunes of St.  Augustine in Florida, and most points in between, looking at both nature  and historic sites along the way.
There certainly is nature to be found  further inland, but rather few historic sites. It is very important  to understand that, unlike the ancient and compact  settlement patterns of Europe, and unlike its dense and active network  of navigable rivers and canals, North America consists of a rather narrow  but thickly settled coastal zone known as the Northeast Corridor, and  the vast expanse of Wild West. Historically, the colonies survived through  ocean trade. Until the advent of coal-fired railroads, the only parts  of the interior that were economically viable were the ones that were  within easy reach of a navigable waterway. Even then many inland settlers  found grain to be too bulky for trade, and used it to make whiskey.  The Erie Canal made Chicago a town rather than just  a portage between the Great Lakes and the Mississippi River. The reason  was simple: before the advent of railroads, it cost as much to transport  cargo 30 or so miles overland as it did to ship it across the ocean.  Until a railroad was built across Massachusetts, goods shipped from  Chicago to Boston via the Erie Canal had to be loaded onto barges and  floated down the Hudson River to New York, then transferred to schooners  that took them up the coast.
It is also very important to understand  that global trade is not, as one unfortunately often hears, only possible  thanks to fossil fuels. Until the 1920s much of the shipping in Boston  Harbour was by sail. Most of the ships were relatively small, with vast  numbers of schooners of around 60 feet and crews of 10 or fewer. The  age of container ships, bulk carriers, roll-on roll-offs (ROROs), and  other monstrous oil-thirsty craft is quite recent, while the history  of global trade is ancient, and proceeded in one of two ways: on foot  (leading caravans of pack animals) or by sail. It is also important  to note that coal never became competitive with sail in transporting  bulk goods, and sail-based shipping persisted until the age of the marine  diesel engine, which burns bunker fuel (a slightly upgraded crude oil).  This substance will most likely no longer be available in the vast quantities  required just a few decades from now, and certainly well before the  end of the century. It seems plausible to think that the age of fossil  fuels will end as it started, with oil giving way to coal, giving way  to wind.
And so, in looking at the future  of North America, it makes sense to examine historical settlement patterns  and patterns of trade. Even after the powerful economic stimulant of  fossil fuels is no longer flowing freely, the perennial choice will  remain the same: make and ship trade goods, or remain backward and poor.  The transportation options will once again be largely limited to the  waterways, with the vast landlocked areas of North America becoming  stagnant backwaters, unable to trade, and steadily depopulating. Many  people look at the end of the fossil fuel age and envision a future  that is much more local; and surely it will be, but what they do not  envision is the effect of a radically altered transportation topology.  The current tightly interconnected transportation mesh of rail links,  highways, and airports will be gone; and in its place will arise a sparse,  seasonal network favouring single modes of transport for each link (pack  animal, river barge, or ocean sailboat), heavily weighted in favour  of water transport, and even more heavily weighted in favour of sail.  Transporting a few tons of cargo per crew member across the Atlantic  will require a few weeks' worth of rations for the crew members and  a bit of sailcloth for the ship, but the wind will still be free. Hauling  the same amount of freight across the Appalachian mountain range, which  runs the length of the Eastern Seaboard, would become something of an  epic undertaking.
Looking, once again, at the historical  settlement patterns along the Eastern Seaboard, it becomes clear that  how prosperous and populous any given coastal settlement becomes has  a lot to do with how good a harbour it has. The Carolinas present an  excellent example of this: their climates and populations are broadly  similar, yet North Carolina is poor while South Carolina is prosperous.  The difference can be brought down to a single, overwhelming factor:  South Carolina's Charleston Harbour. This is a splendid deep-water harbour,  sheltered, with a wide inlet. North Carolina is dominated by Cape Hatteras,  an area of shifting shoals and wide, shallow bays. To make matters worse,  the Cape brings together the warm Gulf Stream, flowing north and turning  east, with the terminus of the cold Labrador Current flowing south,  and the mixture of the two creates a lot of unsettled weather. To make  matters worse yet, it is within reach of tropical cyclones, which shift  sand dunes, close and open ocean inlets, and play havoc with coastal  communities that depend on access to the ocean. While  Charleston Harbour is a major asset, Cape Hatteras is a world-class  hazard to navigation. And so South Carolina grew rich by importing African  slaves and exporting rice, indigo, and cotton through Charleston Harbour;  while North Carolina, with its many shoals and few and treacherous navigable  ocean inlets, developed no major towns and subsisted largely through  fishing.
I've looked closely at many of the  successful port towns, large and small, along the Eastern Seaboard:  Portland, Newburyport, Salem, Boston, Newport, New York, Charleston,  and St. Augustine, plus a few others. All of these have accumulated  centuries of history, much of it connected with the sea and, hence,  with faraway peoples and places, and this makes them major tourist destinations.  The quality of the harbour, it turns out, had much to do with the relative  success of a port: Boston's excellent harbour, with a wide channel and  ample anchorages with good holding ground in the lee of a good set of  sheltering harbour islands, allowed Boston to compete with New York  in transatlantic trade. But beyond geological luck, something else stands  out: the quality of the transition between water and land. In every  good port there are dredged and marked approaches to piers and jetties,  good seawalls high enough to keep out most storm surges, and dry land  beyond, which is solid and graded flat. Over its long history as a port  town, a hilly town, such as Portland, Boston, or New York, slowly grows  an apron of land that is just high enough to be out of reach of most  waves. Although some of these shoreline reinforcements are the result  of ambitious projects (the cut-stone embankment in Newburyport is a  good example), many of them are the result of a slow process of accretion  by generations of people plying maritime trades, adjusting the shoreline  to different uses by floating in and dumping rip-rap and solid fill,  building seawalls, jetties and piers, seeing them pruned back by storms,  and learning their lessons. Just how close to the margin these old structures  already are became apparent to me last summer: during high tide, and  thanks to the extra two feet of water we got for no adequately understood  reason, some of the older, abandoned piers in Salem, Massachusetts were awash.
Most of these structures have been  designed with hundred-year floods in mind, presumably because having to rebuild  them every century or so is not such a bad thing. But then, given the  expected ocean level rise, every hundred years will become every 10,  then every year, and then every neap tide, then every high tide when  there is an easterly wind, and then permanently awash at high tide.  Who would be up to the thankless task of piling up more rocks and driving  in more pilings, just to see them washed away a decade or so later?  A related problem is the silting up of channels caused by accelerated  erosion. Once waves can reach a stretch of land that hitherto only had  to contend with rainwater and snow melt, it often dissolves catastrophically,  and what was for centuries a waterside pasture or marshland protected  by a bit of rock is transformed within a season or two into a gradually  sloping mud flat. The mud then gets scoured out by each tide and settles  in the deepest spots, which are the navigation channels. At what point  everyone will decide that all of this very temporary shoring up and  dredging is just too much work is entirely unclear, but it seems likely  that enough other problems will occur at the same time to make the question  moot. As we prepare to say "hello" to the rising waters, we  should also prepare to bid "adieu" to deep-draught dockage.
What other problems might we have?  The United States Environmental Protection Agency was nice enough to  publish some approximate maps, colour-coding the results of an ocean  level rise of up to 1.5m as red and up to 3.5m as blue for the entire  Atlantic coast of North America. Since I am particularly well-acquainted  with Boston, that part of their map drew my attention first. The resolution  is not very high, but sometimes precision is superfluous. If you expect  to find yourself standing on the corner of Commonwealth Avenue and Massachusetts  Avenue in 2050, should you expect the water be up to your navel, your  nipples, or your eyeballs? Certainly, this would not be the map to consult  on that particular occasion, but then would that be a time to consult  a map at all? Broad brushstrokes are perfectly fine for the purposes  of this discussion, just as a wrecking ball need not be swung with any  great precision.
But to start with, here is a neat  and tidy map of Boston within its current shoreline. Entering Boston  Harbour from the Atlantic, we pass between Deer Island with its sewage  treatment plant on the right and Long Island on the left. We proceed  down the main channel into the inner harbour, passing between City Point  on our left and Logan International Airport on our right. Past that,  on our left we find the port of South Boston, which handles container  ships, and the World Trade Centre, where cruise ships dock, while on  our right is East Boston with its one remaining shipyard and marina,  but where once the mighty clipper ships for the China tea trade were  built. Further down the channel, we round the downtown with its skyscraper-studded  financial district on our left. To our right is Mystic River, which  has a liquefied natural gas tanker terminal, a dock for scrap iron barges,  and a car ferry port. Turning further left, we pass Charlestown Navy  Yard and the Charles River Dam (which should have properly been called  the Charles River Pumping Station). Beyond is the Charles River Basin,  ringed by lovely waterside parks, which, on good days and bad, are full  of bicyclists and joggers. The river itself is also normally quite full  of sailing dinghies, rowing sculls, canoes, and kayaks. Three large  universities — Massachusetts Institute of Technology, Harvard University  and Boston University — are located right on the river, and each has  a boathouse. (Northeastern University is landlocked, but has a boathouse  nevertheless.)
 
  
Before the Charles River Dam was  built, Charles River was brackish and tidal, and smelled rather bad.  The pumping station houses several large diesel engines that drive turbines  that pump down the river during high tides and heavy rains, to prevent  the river from leaving its banks. I have spent a year or so living at  a marina directly downstream of the dam, and have observed that the  pumping station does not run very often, but when it does it is quite  an impressive sight. The tidal range is about 3 metres, and so with  a 1.5-metre rise it would have to be running over half of the time,  a 3m rise would force it to run continuously, and a 4m rise would likely  put it underwater for good.
And here is the map prepared by our  friends at the EPA. What's red goes under at 1.5 metres rise, what's  blue goes under at 3.5m rise, tan is either dry or uncovers at low tide  at 3.5 metres rise (distinction not shown), and light blue is currently  water. As we enter the harbour, Deer Island on our right is now again  an island because the dam connecting it to the town of Winthrop is gone,  as is much of Winthrop. Long Island, the barrier island on our left,  is mostly washed out as well. Logan International Airport still has  its control tower above water, but now only caters to sea planes. Port  of South Boston and World Trade Centre are no more; same with East Boston's  shipyard facilities. Downtown stands as an island, but is rather hard  to reach because all the highway tunnels are underwater, as are the  docks. Mystic River facilities are gone as well. Charles River Dam is  out of commission, and Charles River Basin is once again brackish and  tidal all the way upstream to Watertown (off the map to the left), so-called  because it has another, smaller dam, and supplied all of Boston's water  before an aqueduct was built to a reservoir quite far away. Prior to  closing their doors, MIT, Harvard, and Boston University have spent  the remainder of their rapidly dwindling endowments on dikes, dams,  and pumping stations, to no avail.
 
  
To be perfectly candid, looking at  this map does not fill me with optimism for the future of our fair City  on a Hill. It seems that in due course it will turn into a landscape  studded with abandoned wrecks of buildings standing knee-deep in a swirling  colloidal suspension of excrement and garbage. What are the chances  of preserving road access, or the electric grid, or water and sewer  services under such conditions? And is it worth anyone's trouble to  even try, if it is understood that another decade will bring another  few centimetres of ocean level rise, and that in response the shoreline  will move a few kilometres further inland? Would it not be wiser to  abandon entire areas as the water comes in, understanding that once  it is in, it is there to stay?
But that leaves open an important  question: What about Boston as a port? The same question applies to  any other port, or, for that matter, just about any stretch of shoreline,  for, as we will see in Part III, Boston's case is quite typical. Suppose  you are a planter, happily growing wheat close enough to the coast to  walk it down to the waterline with the help of some mules, and you would  like to exchange that wheat (baked into hard biscuits and packed in  waterproof tins) with some sailors in exchange for a few bottles of  wine, some chocolate, and some silk cloth for a bridal gown (life goes  on, you know). You pack the tins in panniers, strap the panniers onto  your mules, and walk in stately procession toward the coast (mules aren't  exactly swift animals, and 1 mile per hour is what they generally peg  out at). With port facilities permanently submerged, where do you intersect  with your sailor friends to effect the exchange?
Things are not as hopeless as they  would seem. After all, we did manage to colonise the entire planet using  sailboats and without any port facilities to start with. A variety of  techniques, some ancient, some decidedly twenty-first century, can be  brought to bear to solve this problem. The problem most people face  in adapting to the rapidly transforming landscape is not technical but  psychological: they will insist on attempting to run their  existing systems until they crash, simply because they have so much  invested in them. This will mean that most people will simply deal themselves  out of the game, and that the volume of global trade will diminish,  perhaps by several orders of magnitude. But it will not stop altogether,  and may eventually recover somewhat.
   In The European Lowlands by Keith Farnish 
Walking the grassy embankment between the tidal River Orford and the dusty fields of East Suffolk, it becomes starkly clear what sea level rise would mean to this part of the English coast. As I walk northwards the brackish water laps the broken-down concrete sills and oozes through the cracks, eroding away silt from the dike that I am striding along. Marsh Samphire seems to glow in the October sun; a tasty treat, but rare enough to be a delicacy in these parts. To my left, a cloud of dust is whipped up by the breeze, helped on its way by the harrows of a tractor: it’s been a dry month, and the frail earth is easily moved by the action of the wind. Weak, exhausted soil; the result of decades of relentless tillage in a land that is dependent upon constant drainage via a highly complex system of ditches and waterways.
The land here may be flat and low, but there is enough height on Orford Ness to mean that I can’t make out the North Sea, even from the top of this dike. But I can hear it as it washes through the stones that make up this ephemeral spur of land and then pulls back, moving the shingle in eddies down the coast. Farmland to my left; seas to my right – what must the people who live here think?
Constant dread, would be one expectation; but somehow I don’t think that is the case. If we make our way 100 miles north-west to the Fenlands of Cambridgeshire and Lincolnshire, then we experience a world of 
sea-level denial:
The Middle Level is the central and largest section of the Great Level of the Fens, reclaimed by drainage during the mid-17th Century.
Its river system consists of over 120 miles (190 kilometres) of watercourses most of which are also navigations and has a catchment of just over 170,000 acres (70,000 hectares).
The efficient operation of the system is vital to the safety and prosperity of over 100,000 people who live and work in the area. But for the operations of the Commissioners and boards, much of the fen land would be under water for much of the year, accesses from higher ground would be cut-off and many of the present land uses, which are taken for granted, would be impossible.
Stern warnings indeed, but calmed by the claims of the Middle Level Commission; something we also see for another of the large Internal Drainage Boards (IBDs), that of South Holland, a 95,000 acre part of Lincolnshire, which 
states: "Although the entire area is at considerable theoretical risk of river flooding and inundation from the sea, the 
actual risk is 
substantially reduced by the work that we do in partnership with Local Authorities, the Environment Agency and Natural England."
Everything will be fine if they do their job? There is a clue in the word “fine”, as the balancing act between inundation and successful drainage rests on the finest of lines; something you can easily see if you enter a very conservative 2 metre sea level rise into the 
Firetree global flood map:
 
That’s the Fenlands gone, then, in all practical sense. Plug in something approaching the more dramatic scenarios discussed in Part One of this series, and you see what can only be described as an entirely new landscape: a 5 metre rise creates a larger North Sea, extending southwards to Cambridge, and taking a five mile slice off the Lincolnshire coast. No more holidays in Skegness and, probably more significantly, about 
10 Gigawatts of electricity generation capability (about 15% of the UK total) is at or below sea level. That’s just in one particular part of England; on a larger scale, given the propensity for nuclear power stations to be on the coast and 
coal-fired power stations to be near rivers (for cooling water), a five metre rise in sea level would pretty much have the UK’s power supply bollixed. You won’t see that in any official reports.
Back to the fertile croplands of the Fens, and neither will you see this startling fact mentioned: the pumping station at St Germans, two miles south-west of Kings Lynn, is just about the only thing preventing the aforementioned 170,000 acres of Fenland (the Middle Level) from flooding, even without sea-level rise. It would only take a power failure during a heavy period of rain or a high spring tide, with the sluice gates down, to quickly engulf the area. With a 5 metre rise, the new state-of-the-art system – due to be completed in 2010 – will be 
underwater all the time. With a storm surge, like that experienced in 1953, a mere two metre rise should suffice to flood the whole of the Middle Level, with the St Germans pumping station sputtering to an ungainly halt. If you want to see the one thing that lies between safety and the flooding of 265 square miles of land, 
click on this link. Comforting, isn’t it?
Do you know what it would mean to bring marshland back to the East of England on the kind of scale envisaged with just a modest sea-level rise? Not only will the land become unstable for the majority of buildings currently in the area, and totally incapable of supporting agriculture of any kind beyond sheep grazing; the Fenlands, the Broads, and the East Suffolk, Essex and Kent coasts will experience the unwelcome return of malaria. Malaria in the UK; something that up until the urgent Canutian shoring up of the coast in the 19 c. was tolerated as an occupational hazard by the few who lived there, but would be a scourge upon modern towns and cities. As MJ Dobson writes, in 
a sobering paper on the incidence of malaria in England:
On every count, the marshland populations recorded the highest adult and child mortality rates. Average crude death rates were as high as 60, 70 or 80 per 1000 — levels which could be two to three times those of neighbouring non-marshland parishes. Life expectancy at birth was little more than 30 years for the sickly marshland residents and nearly half of all recorded deaths occurred at age 10 years or below. Burial patterns from year to year and season to season were also extremely volatile in the marshes and there was a very close correspondence between fluctuations in summer temperatures and the level of mortality in the autumn and following spring. The hottest summers were always followed by the unhealthiest and most mortal times in the marshlands.
A marshy land experiencing rising temperatures: this could be any coastal region in the world, coming to a time near you.
   Dutch Denial 
Never underestimate the Dutch: apart from being a race of phenomenally linguistic people who have found an almost perfect social balance between freedom and responsibility, at least compared to the rest of the civilised world, they also manage to keep a level head when a fifth of the Netherlands is only inhabitable by humans because of thousands of miles of dikes.
I suppose when you have to squint far into the past to see the deadliest of floods experienced by your people, knowing that in the last 100 years only one flood event has taken a significant number of lives, then a feeling of safety is bound to embrace you to a certain extent. But what if you do peer back?
1717 is regarded as the year of the last great flood in the Netherlands; the Christmas Flood which is estimated to have led to the deaths of 14,000 people in a single night. Return to 1570, and the All Saints flood is said to have taken many thousands of lives. Similarly in 1530, 1421, 1404, 1287... St Lucia’s Flood in 1287 washed away between 50 and 80 thousand rural lives in the low-lying central plains of Holland. Back and back, a pattern of death that should serve to haunt the cultural memories of the Dutch – it really should, regardless of how safe things may feel at the moment:
Of all the United Provinces, Frieseland and Groningen have suffered, and continue to suffer, most from these floods. Exposed to the full rage of the north, north-west, and west winds, the waters of the angry Atlantic and Polar seas rush towards these provinces, pour through the inlets of its barrier reef – the Helder, (Hels-deur – hell’s door) the Vlie, and the more northern gates – heap them up in the inland Zuyder Zee, burst or overtop its dykes, and spread themselves over the country, sometimes to the very borders of Hanover. Thousands of men and cattle perish, the gates of the barriers become widened, and the dominion of the inland sea enlarged.
This paragraph, from E. and R. Littell’s “Living Age” (1848) predates any major engineering works, apart from the piecemeal implementation of thousands of local dikes, which were only ever meant to provide temporary respite from flooding. A remarkable plan, albeit primarily motivated by the desire for more farmland and population space, appeared in Modern Mechanix in 1930 (courtesy of the 
Strange Maps Blog), proposing the construction of a 450 mile long, 30 metre high wall across the central North Sea, with another slightly smaller one curving every which way to block off the southern end.
 
Absurdly impractical, as well as ecologically and politically ruinous, perhaps; but the construction of the Afsluitdijk (literally “Closure Dike”) across the mouth of the 2,000 square mile Zuiderzee between 1927 and 1933, was certainly close to the limits of engineering in that period, and is still the largest single land “reclamation” project ever completed. The word “reclamation” is quoted intentionally, for what exactly is “reclaimed” when the oceans are banished from a place where they once existed?
This assertiveness, the almost messianic approach to claiming for a nation what was never its property, is foolhardy at best, and pathological at worst. What was once ocean can never truly be land unless the cycles of the climate deem it to be so – and we are undoubtedly taking them in the opposite direction. If we wilfully claim ascendancy over the incumbent waters, as the Dutch and the British have done over the last 800 years or so in their respective lowlands, then eventually the mindset that dominates is one of impregnability.
But the waters will return, not only to the coastline of eastern England as the sluice gates fail, but also to overtop the Afsluitdijk which is just 7 metres high. Remember back in Part One, when the 1953 flood reached 4.55 metres above the Normal Amsterdam Water Level? Well, the risk is increasing all the time; not only as the sea level rises, but as the energy in the oceans increases and – something that is the epitome of risk – the population grows inexorably. The denial culture that blossoms behind coastal defences is alive and well in the Netherlands, according to Maaskant, Jonkman and Bouwer:
The projected population growth in flood prone areas is higher than the average in the Netherlands between 2000 and 2040. Due to this effect the potential number of fatalities is projected to increase by 68% on average for 10 different flood scenarios, not including impacts from climate change and sea level rise. Just sea level rise of 0.30 m leads to an average 20% increase in the number of fatalities. The combined impact of sea level rise and population growth leads to an estimated doubling in the potential number of fatalities. Taking into account increasing probability of flooding due to sea level rise and extreme river discharges, the expected number of fatalities could quadruple by 2040.
(“Future risk of flooding: an analysis of changes in potential loss of life in South Holland”, Environmental Science & Policy, 2009)
“Reclaimed land” is an anachronism because you cannot reclaim what you never had – the sea will reclaim the land soon; sooner than you can imagine.
* * *
For a while yet, coastal destruction caused by sea level rise will be seen as something that happens to someone else, somewhere else (or to you, but then that's just your bad luck). Social inertia will follow its usual course, causing people to insure themselves against fires and other minor accidents, sweat the little details of public health and safety, fight terrorism, while steadfastly ignoring the elephant in the room that is about to sit down on their heads. At what point will it become obvious to just about everyone that the gods saw their plans, laughed at them, and then cancelled them? Will it then be too late to do anything to prepare, or will those near the coast simply join the ranks of environmental migrants? And if you do start taking steps to prepare now, will you be viewed as a harmless eccentric, an alarmist crackpot, or a dangerous subversive?
In response to these questions, we are sure to hear a chorus of "Gloom and doom!" Ah, the "doomers" and the doomed, what beautiful music they make! Be that as it may; In Part III of this series, we will leave questions of denial and social inertia and political climate nonsense behind, and concentrate on What Might Work.
Keith Farnish is author of "Time's Up! An Uncivilized Solution To A Global Crisis" (http://www.timesupbook.com) and also writes The Earth Blog and The Unsuitablog. He enjoys being a husband and dad, walking around and growing things.
Further reading: 
Climate Change Puts Trillions of Dollars in Assets at Risk Along U.S. Coasts